M-math 2nd year Final Exam Subject : Probability Theory

Time : 2.30 hours

Max.Marks 50.

Let (Ω, \mathcal{F}, P) be a probability space. All random variables or stochastic processes mentioned below will be on this probability space.

(1) (a) Let $\{B_t\}$ be a standard Brownian motion. Prove that, with probability 1,

$$\lim_{n \to \infty} \frac{1}{n} B_{2n} = 0.$$
(7)

- (b) Let $\{X_t\}_{t\in[0,\infty)}$ be a stochastic process. Show that the following are equivalent.
 - (i) $\{X_t\}$ is a Brownian motion.
 - (ii) $\{X_t\}$ is a continuous centred Gaussian process with $Cov[X_s, X_t] = s \land t, \forall s, t \ge 0.$ (4+4)
- (c) Let $\{B_t\}$ be a Brownian motion. Using part (b) or otherwise, show that $\{\frac{1}{2}B_{4t}\}$ is also a Brownian motion. (5)
- (2) Let (B_t) be a standard one dimensional Brownian motion.
 - (a) Let X be an N(0, 1)-distributed random variable, which is independent of $\{B_t\}$. For any $t \in [0, 1]$ show that

$$P(\sqrt{1-t} |X| \le |B_t|) = \frac{2}{\pi} \arcsin\left(\sqrt{t}\right).$$
(10)

(b) Let $\tau_b := \inf\{s > 0 : B_s = b\}$. Show that for b > 0,

$$E(e^{\lambda\tau_b}) = e^{-b\sqrt{2\lambda}}.$$

(c) Show that for any a > 0, t > 0 $P\{\sup\{B_s, 0 \le s \le t\} > a\} = 2P\{B_t > a\}.$ (7)

(8)

- (3) Let (B_t) be any one dimensional Brownian motion, (\mathcal{F}_t) its natural filtration and τ a finite stopping time.
 - (a) Show that $(B_{t+\tau} B_{\tau})_{t \ge 0}$ is a standard Brownian motion independent of \mathcal{F}_{τ} .
 - (b) Using part a) or otherwise show that the strong Markov property holds at τ .

$$(10+5)$$